Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 165(4): 946-962.e13, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37454979

RESUMO

BACKGROUND & AIMS: Ulcerative colitis (UC) is characterized by severe inflammation and destruction of the intestinal epithelium, and is associated with specific risk single nucleotide polymorphisms in HLA class II. Given the recently discovered interactions between subsets of HLA-DP molecules and the activating natural killer (NK) cell receptor NKp44, genetic associations of UC and HLA-DP haplotypes and their functional implications were investigated. METHODS: HLA-DP haplotype and UC risk association analyses were performed (UC: n = 13,927; control: n = 26,764). Expression levels of HLA-DP on intestinal epithelial cells (IECs) in individuals with and without UC were quantified. Human intestinal 3-dimensional (3D) organoid cocultures with human NK cells were used to determine functional consequences of interactions between HLA-DP and NKp44. RESULTS: These studies identified HLA-DPA1∗01:03-DPB1∗04:01 (HLA-DP401) as a risk haplotype and HLA-DPA1∗01:03-DPB1∗03:01 (HLA-DP301) as a protective haplotype for UC in European populations. HLA-DP expression was significantly higher on IECs of individuals with UC compared with controls. IECs in human intestinal 3D organoids derived from HLA-DP401pos individuals showed significantly stronger binding of NKp44 compared with HLA-DP301pos IECs. HLA-DP401pos IECs in organoids triggered increased degranulation and tumor necrosis factor production by NKp44+ NK cells in cocultures, resulting in enhanced epithelial cell death compared with HLA-DP301pos organoids. Blocking of HLA-DP401-NKp44 interactions (anti-NKp44) abrogated NK cell activity in cocultures. CONCLUSIONS: We identified an UC risk HLA-DP haplotype that engages NKp44 and activates NKp44+ NK cells, mediating damage to intestinal epithelial cells in an HLA-DP haplotype-dependent manner. The molecular interaction between NKp44 and HLA-DP401 in UC can be targeted by therapeutic interventions to reduce NKp44+ NK cell-mediated destruction of the intestinal epithelium in UC.


Assuntos
Colite Ulcerativa , Antígenos HLA-DP , Humanos , Antígenos HLA-DP/genética , Colite Ulcerativa/genética , Células Matadoras Naturais , Haplótipos , Células Epiteliais
2.
Mucosal Immunol ; 16(4): 408-421, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37121384

RESUMO

Early life is characterized by extraordinary challenges, including rapid tissue growth and immune adaptation to foreign antigens after birth. During this developmental stage, infants have an increased risk of immune-mediated diseases. Here, we demonstrate that tissue-resident, interleukin (IL)-13- and IL-4-producing group 2 innate lymphoid cells (ILC2s) are enriched in human infant intestines compared to adult intestines. Organoid systems were employed to assess the role of infant intestinal ILC2s in intestinal development and showed that IL-13 and IL-4 increased epithelial cell proliferation and skewed cell differentiation toward secretory cells. IL-13 furthermore upregulated the production of mediators of type-2 immunity by infant intestinal epithelial cells, including vascular endothelial growth factor-A and IL-26, a chemoattractant for eosinophils. In line with these in vitro findings increased numbers of eosinophils were detected in vivo in infant intestines. Taken together, ILC2s are enriched in infant intestines and can support intestinal development while inducing an epithelial secretory response associated with type 2 immune-mediated diseases.


Assuntos
Imunidade Inata , Interleucina-13 , Adulto , Humanos , Lactente , Linfócitos , Fator A de Crescimento do Endotélio Vascular , Interleucina-4 , Intestinos , Interleucina-33 , Citocinas/metabolismo
3.
Biol Sex Differ ; 14(1): 11, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36814288

RESUMO

BACKGROUND: The clinical course and outcome of many diseases differ between women and men, with women experiencing a higher prevalence and more severe pathogenesis of autoimmune diseases. The precise mechanisms underlying these sex differences still remain to be fully understood. IRF5 is a master transcription factor that regulates TLR/MyD88-mediated responses to pathogen-associated molecular patterns (PAMPS) in DCs and B cells. B cells are central effector cells involved in autoimmune diseases via the production of antibodies and pro-inflammatory cytokines as well as mediating T cell help. Dysregulation of IRF5 expression has been reported in autoimmune diseases, including systemic lupus erythematosus, primary Sjögren syndrome, and rheumatoid arthritis. METHODS: In the current study, we analyzed whether the percentage of IRF5 positive B cells differs between women and men and assessed the resulting consequences for the production of inflammatory cytokines after TLR7- or TLR9 stimulation. RESULTS: The percentage of IRF5 positive B cells was significantly higher in B cells of women compared to men in both unstimulated and TLR7- or TLR9-stimulated B cells. B cells of women produced higher levels of TNF-α in response to TLR9 stimulation. CONCLUSIONS: Taken together, our data contribute to the understanding of sex differences in immune responses and may identify IRF5 as a potential therapeutic target to reduce harmful B cell-mediated immune responses in women.


Assuntos
Linfócitos B , Fatores Reguladores de Interferon , Fator de Necrose Tumoral alfa , Feminino , Humanos , Masculino , Citocinas/metabolismo , Fatores Reguladores de Interferon/metabolismo , Caracteres Sexuais , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Linfócitos B/metabolismo
4.
Cell Mol Immunol ; 20(2): 201-213, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36600048

RESUMO

Gastrointestinal infections are a major cause for serious clinical complications in infants. The induction of antibody responses by B cells is critical for protective immunity against infections and requires CXCR5+PD-1++ CD4+ T cells (TFH cells). We investigated the ontogeny of CXCR5+PD-1++ CD4+ T cells in human intestines. While CXCR5+PD-1++ CD4+ T cells were absent in fetal intestines, CXCR5+PD-1++ CD4+ T cells increased after birth and were abundant in infant intestines, resulting in significant higher numbers compared to adults. These findings were supported by scRNAseq analyses, showing increased frequencies of CD4+ T cells with a TFH gene signature in infant intestines compared to blood. Co-cultures of autologous infant intestinal CXCR5+PD-1+/-CD4+ T cells with B cells further demonstrated that infant intestinal TFH cells were able to effectively promote class switching and antibody production by B cells. Taken together, we demonstrate that functional TFH cells are numerous in infant intestines, making them a promising target for oral pediatric vaccine strategies.


Assuntos
Linfócitos T CD4-Positivos , Receptor de Morte Celular Programada 1 , Linfócitos T Auxiliares-Indutores , Adulto , Criança , Humanos , Lactente , Linfócitos B , Receptores CXCR5 , Linfócitos T CD4-Positivos/imunologia
5.
Virus Res ; 310: 198685, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35041864

RESUMO

Synonymous replacement of CpG dinucleotides in the HIV-1 envelope (env) coding region has been correlated with evasion of the antiviral activity of the zinc-finger antiviral protein (ZAP). We aimed to explore the effect of depleting HIV-1 env CpG dinucleotides by synonymous substitution on ex vivo viral replication capacity. To this end, we eliminated 11 env CpG dinucleotides through synonymous substitutions in the CXCR4-tropic HXB2 strain. The replication kinetics in MT-4 cells and peripheral blood mononuclear cells (PBMCs) of the WT and synonymously recoded mutant viruses were indistinguishable. However, virus competition assays in MT4 cells between the WT and recoded viruses showed that the mutant with fewer CpG dinucleotides quickly overgrew the WT virus. These results demonstrate that a reduction in HIV-1 env CpG dinucleotide frequency can improve viral replication capacity in cell culture. Our results support the previous observation that the frequency of CpGs in the HIV-1 env region correlates with differences in clinical progression rates in infected individuals.


Assuntos
HIV-1 , Antivirais , Genes env , HIV-1/genética , Humanos , Leucócitos Mononucleares , Replicação Viral/genética
6.
Cells ; 10(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209946

RESUMO

Synonymous codon pair deoptimization is an efficient strategy for virus attenuation; however, the underlying mechanism remains controversial. Here, we optimized and deoptimized the codon pair bias (CPB) of the human immunodeficiency virus type 1 (HIV-1) envelope (env) gene to investigate the influence of env synonymous CPB recoding on virus replication capacity, as well as the potential mechanism. We found that env CPB deoptimization did not always generate attenuation, whereas CPB optimization attenuated virus replication in MT-4 cells. Furthermore, virus attenuation correlated with reduced Env protein production but not with decreased viral RNA synthesis. Remarkably, in our model, increasing the number of CpG dinucleotides in the 5' end of env did not reduce the replication capacity of HIV-1. These results indicate that factors other than CPB or CpG content may have impacted the viral fitness of the synonymously recoded study variants. Our findings provide evidence that CPB recoding-associated attenuation can affect translation efficiency. Moreover, we demonstrated that an increased number of CpGs in the 5' end of HIV-1 env is not always associated with reduced virus replication capacity.


Assuntos
Códon/genética , Genes env , HIV-1/genética , HIV-1/fisiologia , Replicação Viral/genética , Linhagem Celular , Regulação Viral da Expressão Gênica , Humanos , Cinética , Mutação/genética , Oligodesoxirribonucleotídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
7.
Front Microbiol ; 12: 606087, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796084

RESUMO

Synonymous mutations within protein coding regions introduce changes in DNA or messenger (m) RNA, without mutating the encoded proteins. Synonymous recoding of virus genomes has facilitated the identification of previously unknown virus biological features. Moreover, large-scale synonymous recoding of the genome of human immunodeficiency virus type 1 (HIV-1) has elucidated new antiviral mechanisms within the innate immune response, and has improved our knowledge of new functional virus genome structures, the relevance of codon usage for the temporal regulation of viral gene expression, and HIV-1 mutational robustness and adaptability. Continuous improvements in our understanding of the impacts of synonymous substitutions on virus phenotype - coupled with the decreased cost of chemically synthesizing DNA and improved methods for assembling DNA fragments - have enhanced our ability to identify potential HIV-1 and host factors and other aspects involved in the infection process. In this review, we address how silent mutagenesis impacts HIV-1 phenotype and replication capacity. We also discuss the general potential of synonymous recoding of the HIV-1 genome to elucidate unknown aspects of the virus life cycle, and to identify new therapeutic targets.

8.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32817222

RESUMO

Synonymous genome recoding has been widely used to study different aspects of virus biology. Codon usage affects the temporal regulation of viral gene expression. In this study, we performed synonymous codon mutagenesis to investigate whether codon usage affected HIV-1 Env protein expression and virus viability. We replaced the codons AGG, GAG, CCU, ACU, CUC, and GGG of the HIV-1 env gene with the synonymous codons CGU, GAA, CCG, ACG, UUA, and GGA, respectively. We found that recoding the Env protein gp120 coding region (excluding the Rev response element [RRE]) did not significantly affect virus replication capacity, even though we introduced 15 new CpG dinucleotides. In contrast, changing a single codon (AGG to CGU) located in the gp41 coding region (HXB2 env position 2125 to 2127), which was included in the intronic splicing silencer (ISS), completely abolished virus replication and Env expression. Computational analyses of this mutant revealed a severe disruption in the ISS RNA secondary structure. A variant that restored ISS secondary RNA structure also reestablished Env production and virus viability. Interestingly, this codon variant prevented both virus replication and Env translation in a eukaryotic expression system. These findings suggested that disrupting mRNA splicing was not the only means of inhibiting translation. Our findings indicated that synonymous gp120 recoding was not always deleterious to HIV-1 replication. Importantly¸ we found that disrupting an external ISS loop strongly affected HIV-1 replication and Env translation.IMPORTANCE Synonymous substitutions can influence virus phenotype, replication capacity, and virulence. In this study, we explored how synonymous codon mutations impacted HIV-1 Env protein expression and virus replication capacity. We changed a single codon, AGG to CGU, which was located in the gp41 coding region (env nucleotide residues 2125 to 2127) and was included in the HIV-1 intronic splicing silencer. This change completely abolished virus replication and Env expression. We also found that changing codon usage in the gp120 region by including an increased number of CpG dinucleotides did not significantly affect Env expression or virus viability. Our findings showed that synonymous recoding was useful for altering viral phenotype and exploring virus biology.


Assuntos
Genoma Viral , HIV-1/genética , Mutação Silenciosa , Replicação Viral/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Pareamento de Bases , Sequência de Bases , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Códon , Éxons , Células HEK293 , HIV-1/metabolismo , Humanos , Íntrons , Dobramento de RNA , Splicing de RNA , Relação Estrutura-Atividade , Termodinâmica , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
9.
Nucleic Acids Res ; 47(20): 10506-10519, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31584076

RESUMO

Synthetic genome recoding is a new means of generating designed organisms with altered phenotypes. Synonymous mutations introduced into the protein coding region tolerate modifications in DNA or mRNA without modifying the encoded proteins. Synonymous genome-wide recoding has allowed the synthetic generation of different small-genome viruses with modified phenotypes and biological properties. Recently, a decreased cost of chemically synthesizing DNA and improved methods for assembling DNA fragments (e.g. lambda red recombination and CRISPR-based editing) have enabled the construction of an Escherichia coli variant with a 4-Mb synthetic synonymously recoded genome with a reduced number of sense codons (n = 59) encoding the 20 canonical amino acids. Synonymous genome recoding is increasing our knowledge of microbial interactions with innate immune responses, identifying functional genome structures, and strategically ameliorating cis-inhibitory signaling sequences related to splicing, replication (in eukaryotes), and complex microbe functions, unraveling the relevance of codon usage for the temporal regulation of gene expression and the microbe mutant spectrum and adaptability. New biotechnological and therapeutic applications of this methodology can easily be envisaged. In this review, we discuss how synonymous genome recoding may impact our knowledge of microbial biology and the development of new and better therapeutic methodologies.


Assuntos
Controle de Doenças Transmissíveis/métodos , Genoma Bacteriano , Genoma Viral , Genômica/métodos , Animais , Humanos , Mutagênese
10.
J Virol ; 92(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29875244

RESUMO

One unexplored aspect of HIV-1 genetic architecture is how codon choice influences population diversity and evolvability. Here we compared the levels of development of HIV-1 resistance to protease inhibitors (PIs) between wild-type (WT) virus and a synthetic virus (MAX) carrying a codon-pair-reengineered protease sequence including 38 (13%) synonymous mutations. The WT and MAX viruses showed indistinguishable replication in MT-4 cells or peripheral blood mononuclear cells (PBMCs). Both viruses were subjected to serial passages in MT-4 cells, with selective pressure from the PIs atazanavir (ATV) and darunavir (DRV). After 32 successive passages, both the WT and MAX viruses developed phenotypic resistance to PIs (50% inhibitory concentrations [IC50s] of 14.6 ± 5.3 and 21.2 ± 9 nM, respectively, for ATV and 5.9 ± 1.0 and 9.3 ± 1.9, respectively, for DRV). Ultradeep sequence clonal analysis revealed that both viruses harbored previously described mutations conferring resistance to ATV and DRV. However, the WT and MAX virus proteases showed different resistance variant repertoires, with the G16E and V77I substitutions observed only in the WT and the L33F, S37P, G48L, Q58E/K, and L89I substitutions detected only in the MAX virus. Remarkably, the G48L and L89I substitutions are rarely found in vivo in PI-treated patients. The MAX virus showed significantly higher nucleotide and amino acid diversity of the propagated viruses with and without PIs (P < 0.0001), suggesting a higher selective pressure for change in this recoded virus. Our results indicate that the HIV-1 protease position in sequence space delineates the evolution of its mutant spectrum. Nevertheless, the investigated synonymously recoded variant showed mutational robustness and evolvability similar to those of the WT virus.IMPORTANCE Large-scale synonymous recoding of virus genomes is a new tool for exploring various aspects of virus biology. Synonymous virus genome recoding can be used to investigate how a virus's position in sequence space defines its mutant spectrum, evolutionary trajectory, and pathogenesis. In this study, we evaluated how synonymous recoding of the human immunodeficiency virus type 1 (HIV-1) protease affects the development of protease inhibitor (PI) resistance. HIV-1 protease is a main target of current antiretroviral therapies. Our present results demonstrate that the wild-type (WT) virus and a virus with recoded protease exhibited different patterns of resistance mutations after PI treatment. Nevertheless, the developed PI resistance phenotypes were indistinguishable between the recoded virus and the WT virus, suggesting that the HIV-1 strain with synonymously recoded protease and the WT virus are equally robust and evolvable.


Assuntos
Farmacorresistência Viral , Evolução Molecular , Protease de HIV/genética , HIV/efeitos dos fármacos , HIV/fisiologia , Mutação de Sentido Incorreto , Mutação Silenciosa , Células Cultivadas , HIV/genética , Humanos , Linfócitos/virologia , Nucleotídeos/genética , Inoculações Seriadas , Replicação Viral
11.
Antiviral Res ; 155: 106-114, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29807039

RESUMO

Human immunodeficiency virus type 1 (HIV-1)-induced inflammation and/or long-term antiretroviral drug toxicity may contribute to the evolution of liver disease. We investigated circulating plasma microRNAs (miRNAs) as potential biomarkers of liver injury in patients mono-infected with HIV-1. We performed large-scale deep sequencing analyses of small RNA level on plasma samples from patients with HIV-1 mono-infection that had elevated or normal levels of alanine aminotransferase (ALT) or focal nodular hyperplasia (FNH). Hepatitis C virus (HCV) mono-infected patients were also studied. Compared to healthy donors, patients with HIV-1 or HCV mono-infections showed significantly altered (fold change >2, adjusted p < 0.05) level of 25 and 70 miRNAs, respectively. Of the 25 altered miRNAs found in patients with HIV-1, 19 were also found in patients mono-infected with HCV. Moreover, 13 of the 14 most up-regulated miRNAs (range: 9.3-3.4-fold increase) in patients with HCV mono-infections were also up-regulated in patients with HIV-1 mono-infections. Importantly, most of these miRNAs significantly and positively correlated with ALT and aspartate aminotransferase (AST) levels, and liver fibrosis stage (p < 0.05). MiR-122-3p and miR-193b-5p were highly up-regulated HIV-1 mono-infected patients with elevated ALT or FNH, but not in HIV-1 patients with normal levels of ALT. These results reveal that HIV-1 infections impacted liver-related miRNA levels in the absence of an HCV co-infection, which highlights the potential of miRNAs as biomarkers for the progression of liver injury in HIV-1 infected patients.


Assuntos
MicroRNA Circulante/sangue , Infecções por HIV/complicações , Hepatopatias/genética , Hepatopatias/virologia , Fígado/lesões , Adulto , Idoso , Biomarcadores/sangue , Progressão da Doença , Feminino , HIV-1/genética , Humanos , Fígado/virologia , Cirrose Hepática/genética , Cirrose Hepática/virologia , Masculino , Pessoa de Meia-Idade , Transcriptoma , Carga Viral
12.
Trends Microbiol ; 24(2): 134-147, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26646373

RESUMO

Synthetic genome recoding is a novel method of generating viruses with altered phenotypes, whereby many synonymous mutations are introduced into the protein coding region of the virus genome without altering the encoded proteins. Virus genome recoding with large numbers of slightly deleterious mutations has produced attenuated forms of several RNA viruses. Virus genome recoding can also aid in investigating virus interactions with innate immune responses, identifying functional virus genome structures, strategically ameliorating cis-inhibitory signaling sequences related to complex viral functions, to unravel the relevance of codon usage for the temporal regulation of viral gene expression and improving our knowledge of virus mutational robustness and adaptability. The present review discusses the impacts of synonymous genome recoding with regard to expanding our comprehension of virus biology, and the development of new and better therapeutic strategies.


Assuntos
Genoma Viral , Vírus/genética , Animais , Humanos , Mutação , Viroses/virologia , Fenômenos Fisiológicos Virais
13.
J Virol ; 89(19): 9758-64, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26178979

RESUMO

UNLABELLED: Human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) are two highly variable RNA viruses that cause chronic infections in humans. Although HCV likely preceded the AIDS epidemic by some decades, the global spread of both viruses is a relatively recent event. Nevertheless, HCV global diversity is higher than that of HIV-1. To identify differences in mutant diversity, we compared the HIV-1 protease and HCV NS3 protease quasispecies. Three protease gene quasispecies samples per virus, isolated from a total of six infected patients, were genetically and phenotypically analyzed at high resolution (HIV-1, 308 individual clones; HCV, 299 clones). Single-nucleotide variant frequency did not differ between quasispecies from the two viruses (HIV-1, 2.4 × 10(-3) ± 0.4 × 10(-3); HCV, 2.1 × 10(-3) ± 0.5 × 10(-3)) (P = 0.1680). The proportion of synonymous substitutions to potential synonymous sites was similar (3.667 ± 0.6667 and 2.183 ± 0.9048, respectively) (P = 0.2573), and Shannon's entropy values did not differ between HIV-1 and HCV (0.84 ± 0.02 and 0.83 ± 0.12, respectively) (P = 0.9408). Of note, 65% (HIV-1) and 67% (HCV) of the analyzed enzymes displayed detectable protease activity, suggesting that both proteases have a similar mutational robustness. In both viruses, there was a rugged protease enzymatic activity landscape characterized by a sharp peak, representing the master sequence, surrounded by a collection of diverse variants present at lower frequencies. These results indicate that nucleotide quasispecies diversification during chronic infection is not responsible for the higher worldwide genetic diversity observed in HCV. IMPORTANCE: HCV global diversity is higher than that of HIV-1. We asked whether HCV genetic diversification during infection is responsible for the higher worldwide genetic diversity observed in HCV. To this end, we analyzed and compared the genotype and enzymatic activities of HIV-1 and HCV protease quasispecies existing in infected individuals. Our results indicate that HIV-1 and HCV protease quasispecies have very similar genetic diversity and comparable rugged enzymatic activity landscapes. Therapy for HCV has expanded, with new therapeutic agents such as the direct-acting antivirals (DAAs). DAAs, which target HCV NS3 protease and other virus proteins, have improved cure rates. However, major questions remain to be elucidated regarding the virologic correlates of HCV eradication. The findings shown here may help our understanding of the different therapeutic responses observed during chronic HCV infection.


Assuntos
Variação Genética/genética , HIV-1/enzimologia , Hepacivirus/enzimologia , Fenótipo , Proteínas não Estruturais Virais/genética , Sequência de Bases , Análise por Conglomerados , HIV-1/genética , Hepacivirus/genética , Humanos , Dados de Sequência Molecular , Oligonucleotídeos/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...